W/Z +Jets in Early LHC Data

Kevin Black Harvard University

Outline

- ♦ W/Z+ jets physics
 - Test of QCD (large Q²)
 - Sensitive to Hadronization Modeling
- ♦ W/Z +jets as tool
 - Jet Energy Corrections
 - Background to 'known' physics
- ♦ W/Z +jets as discovery channel
 - ♦ Higgs, SUSY, etc...
- Prospects with 100 pb⁻¹

W/Z + jets

Basics of W/Z + Jets Production

kinematic variables:

$$Q^2 = M^2$$

$$y = \frac{1}{2} \ln \frac{x_2}{x_1}$$

- W/Z production from qq annihilation
 - $\rightarrow \eta$, p_T distribution depend on pdf
- large dijet production at Hadron Colliders
 - → selection based on leptonic decays
 - $\mathbf{W} \rightarrow \mathbf{lv}$ (BR: 11 % per mode)
 - 1 isolated lepton, Missing ET
 - $Z \rightarrow 11$ (BR: 3% per mode)
 - 2 isolated leptons,
- Jets from gluon radiation.

Jets via Radiation

- $\mathcal{O}(\alpha)$: W/Z bosons produced with $p_T=0$
- p_T attributed to gluon radiation, expected to broaden
- •with Q^2 : $M \approx 10 \text{ GeV} \implies \langle p_T \rangle \approx 1 \text{ GeV}$
 - $M \approx 80 \text{ GeV} \Rightarrow \langle p_T \rangle \approx 5 \text{ GeV}$
 - $M \approx 91 \text{ GeV} \implies \langle p_T \rangle \approx 6 \text{ GeV}$
- measurements of $d\sigma/dp_T$:
 - $W \rightarrow higher statistics, Z \rightarrow better resolution$

W/Z + jets at Hadron Level

- Matrix Element Calculations at parton level
- Measurements made at observable jet (hadron) and lepton level
- Description of hard sub-process best described by matrix element calculations
- Showering (non-pertubative) relies on showering model (Pythia, Herwig, Sherpa)

Matching ME + showering

- Matrix element calculations available for hard emission
- Soft/Colinear Emission enters non-pertubative region
 - Pythia/Herwig/Sherpa offer models of showering tuned to data
- 'Matching' procedure to avoid double counting (from both matrix element and hadronization)

Theoretical Status

- W/Z+Jets cross-section calculated at NNLO for up to 2 partons

$$\sigma \sim \sum_{a,b} f_{a/N_1} \otimes f_{b/N_2} \otimes \widehat{\sigma}_{ab}$$

Monte Carlo Comparisons

- MCFM/Alpgen + hadronization with Pythia
- Normalized at 0 jet bin
- As expected Pythia only prediction softer (as expected?)
- ◆ Tevatron comparisons show (for the most part) good agreement between data and MC

Backgrounds

- Generally very clean (~10% background for W 2-3% for Z
- W+jets
 - ♦ W+tau,Z, Multijet, tt
- - W,Z,top QCD
- ▲ Large increase (100!) in tt cross section implies it will dominate background at large jet multiplicity

At the Tevatron

Good agreement over several orders Of magnitude ...

Detailed shape variables well described

Tevatron II

CDF-II results for W +n Jet cross-section

MLM – Alpgen MCFM SMPR – Madgraph

Tests of QCD I

- ♦ At LO W/Z has 0 Pt
 - Gluon Radiation causes boson to recoil generating transverse momentum
 - High Transverse momentum results from hard gluon radiation
 - Low Transverse momentum dominated by soft multiple gluon radiation
 - resummation of large $ln(Q^2/p_T^2)$ terms
 - $p_T \rightarrow 0$: parameterize nonperturbative contribution

Tests of QCD II

- ♦ W+njet Jet pt spectrum
- Comparison to Theory

 - MCFM
 - ♦ SMPR Madgraph

Background For Top I

- Recall Tevatron (Run I) discovery of top
- ◆ After removal of instrumental (multijet) background the largest background is W+jets
- Prediction of 3 and 4 jet bin multiplicity bin critical
- 'Berend's' Scalling

Background for top II

- Cross-section for top increases by factor of 100 from Tevatron, W +jets increases by ~10
- Should be signal dominated
- Modeling of W+jets not as important for seeing top but rather for extracting precision properties

Associated Higgs Production

- Low Mass Higgs Difficult due to branching ratio to bb
- Need to use multi channels for discovery
 - Gamma gamma
 - ttH
 - ♦ WH,ZH
- Note diphoton channel is a (very!) rare decay
- Even if discovered in diphoton channel need to see it in other channels

Associated Higgs II

- Problem: Signal to background ratio (without cuts) is very poor ~ 1000 to 1
- Long recognized that could take advantage of boost of Higgs in gamma gamma channel
- In associated production this was not studied completely until recently (jets broader)

Associated Higgs 3

- 'Undo' last step of jet clustering algorithm to reveal substructure
- Split into 2 'subjects': if significant mass drop and not too asymetric pt split keep jets
- Repeat procedure until 3 hardest subjects are found require two to have b-tag

Associated Higgs Production

- Requires a lot of data (30 fb-1)
- However interesting in early data for other Zbb resonances
 - Technicolor
- Full Simulation studies ongoing...

Tool for searches

- Δ Z-> $\nu\nu$ + Jets
 - Searches for SUSY in MET + Jets Channel
- Measure Cross-Section in dilepton+jets channel
 - Correct for acceptance
 - Unfold to get true distribution
- Form template from dilepton data to model 'invisible' decay mode shape and normalization

Z + jet / W + jet

- Discovery of top as 'anomalous' W
 +4 jet bin contribution
- Measurement of ratio reduces common systematics:
 - Luminosity, PDF, jet energy scale all partially cancel in ratio
- ▶ Ratio is a simultaneous test of EW/QCD theory as well as search for anomalous production in either channel (Higgs, SUSY, technicolor)

$$R_{W,Z}^{\mu} = \frac{\sigma(W(\rightarrow \mu\nu + \geq 2 \mathrm{jets}))}{\sigma(Z(\rightarrow \mu\mu + \geq 2 \mathrm{jets}))} \approx 6.58(6.99)^{\#}$$

$$\frac{\sigma(Z(\rightarrow \mu\mu + \geq 2 \mathrm{jets}))}{\sigma(Z(\rightarrow \mu\mu + \geq 3 \mathrm{jets}))} \approx 2.3 \text{ PYTHIA+CMS}$$

$$\frac{\sigma(Z(\rightarrow \mu\mu + \geq 2 \mathrm{jets}))}{\sigma(Z(\rightarrow \mu\mu + \geq 2 \mathrm{jets}))} \approx 3.8 \text{ ALPGEN+}$$

$$\frac{\sigma(Z(\rightarrow \mu\mu + \geq 3 \mathrm{jets}))}{\sigma(Z(\rightarrow \mu\mu + \geq 3 \mathrm{jets}))} \approx 3.8 \text{ PYTHIA(+CKKW) +}$$
 CMS

Prospects for 100 pb⁻¹

- Quick Study normalize previous results at 14 TeV to 10 TeV via MCFM calculation
- Note cut at jet pt > 40 GeV to lessen sensitivity to jet energy scale corrections

Prospects for 100 pb⁻¹

- ◆ Ultimate goal for Jet Energy Scale (JES ~1 %)
 - First analysis likely to have uncertainty ~10%
- Error on cross-section grows with jet multiplicity
 - On the order of 20% for 2 jet bin assuming 10%
 - On order of 40% for 4 jet bin assuming 10% uncertainty

My Dream...

New heavy gauge bosons...

Leptoquarks..

Summary

- W/Z + jets good source of calibration (high pt leptons + jets)
- ♦ W/Z + jets allows for tests of EW/QCD theory
- ♦ W/Z + jets important background for both SM + BSM physics

Backup

Notes on Underlying Event

This is a clear unknown at LHC energies

- Dependence with physics process
- · How "hard" will be?

